(12)

US009286346B2

United States Patent

US 9,286,346 B2
Mar. 15, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

Pruet, IT1
REPLICATION-ONLY TRIGGERS
Inventor: Clarence Madison Pruet, III, Flower
Mound, TX (US)
Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 742 days.
Appl. No.: 11/061,072
Filed: Feb. 18, 2005
Prior Publication Data
US 2006/0190498 A1 Aug. 24, 2006
Int. CL.
GO6F 17/00 (2006.01)
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)
U.S. CL
CPC GO6F 17/30415 (2013.01); GO6F 17/3051
(2013.01)
Field of Classification Search

CPC GO6F 17/30575; GOGF 17/3051
USPC 707/100-204, 615
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

5,170,480 A 12/1992 Mohan et al.
5,381,545 A 1/1995 Baker et al.
5,423,037 A 6/1995 Hvasshovd
5,675,727 A 10/1997 Watanabe
5,684,984 A 11/1997 Jones et al.
5,737,601 A 4/1998 Jain et al.
5,745,753 A 4/1998 Mosher, Ir.

Y

Any
triggers for the
replicate?

194

Traverse the trigger linked list to find any pre-commit
trigger(s) corresponding to the operation for the
replicate, and any post-commit trigger(s) for the

replicate.

5,781,912 A 7/1998 Demers et al.
5,799,306 A 8/1998 Sun et al.
5,806,075 A 9/1998 Jain et al.
5,884,327 A * 3/1999 Cotneretal. ... 239/553.3
5,884,328 A 3/1999 Mosher, Jr.
5,926,819 A 7/1999 Doo et al.
5937415 A 8/1999 Sheffield et al.
6,058,401 A 5/2000 Stamos et al.
6,061,769 A 5/2000 Kapulka et al.
6,119,130 A 9/2000 Nguyen et al.
6,122,630 A 9/2000 Strickler et al.
6,216,137 Bl 4/2001 Nguyen et al.
6,298,338 B1* 10/2001 Melton et al. 707/765
6,351,795 B1 2/2002 Hagersten
6,363,387 Bl 3/2002 Ponnekanti et al.
6,377,959 Bl 4/2002 Carlson
6,408,163 Bl 6/2002 Fik
(Continued)

FOREIGN PATENT DOCUMENTS

JP 07210435 8/1995
WO 03044697 Al 5/2003
OTHER PUBLICATIONS

“Strategies and Technques for Using Oracle7 Replication,” Dominic,
Oracle Consulting, 1995.*

(Continued)

Primary Examiner — Pavan Mamillapalli
(74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP

(57) ABSTRACT

A method provides a replication-only trigger in a database
management system. The database management system has a
source server and a target server. At least one replication-only
trigger which is associated with a replication operation is
registered. The replication-only trigger is associated with a
stored procedure. The stored procedure is invoked in response
to an occurrence of the replication operation in replicating
data from the source server to the target server.

28 Claims, 7 Drawing Sheets

190
| Receive an operation to apply on a replicate. f

Read post-commit trigger 212
request for a transaction from

the log.

Attach the post-commit trigger 214

request to a reconstituted

Found
a pre-commit trigger for
the operation for the
eplicate?.
198

with that pi it trigger.

Found
No. ?u

ap
trigger?

202

For each pre-commit trigger that was found for the
operation for the replicate, execute the stored

eplicate, enter a post-commit trigger request for that

For each post commit trigger that was found for the
"
trigger into the log.

on structure
with the transaction.

In response to reading a commit |- 216
record for the transaction from
the log, add an entry associated
with the post-commit trigger
request to a post-commit

ion list.

I

Execute, by the apply
component, a stored procedure
associated with the post-commit

trigger request.

218

US 9,286,346 B2

Page 2
(56) References Cited 2006/0190503 Al 8/2006 Naicken et al.
2006/0190504 Al 8/2006 Pruet
U.S. PATENT DOCUMENTS 2007/0143247 Al* 6/2007 Brunswig GOGF 17/30557
707/999.002
6.421,686 Bl 7/2002 Martin, Jr. gggggéggi ég ﬁi * gggg; ghattterjee etal. o 707/8
6,460,052 B1 10/2002 Thomas et al. ruc
6,507,880 Bl 1/2003 Arimilli et al. 2008/0215586 Al ~ 9/2008 Pruet
6,510,421 Bl 1/2003 Ganesh et al. 2008/0270490 Al* 10/2008 Watterottetal. 707/204
6,529,917 Bl 3/2003 Zoltan 2009/0219835 Al* 9/2009 Bandholzetal. 370/255
6,529,932 Bl 3/2003 Dadiomov et al. 2012/0005160 Al 1/2012 Naicken et al.
6,532,479 B2 3/2003 Souder et al.
6,553,442 BI 4/2003 Arimilli et al. OTHER PUBLICATIONS
6,584,477 B1* 6/2003 Mosher, Jr.cc.oc..e. 707/204 w L . o
6,587,856 Bl 7/2003 Srinivasan et al. Cuenca-Acunaet al., “Autonomous Replication for High Availability
6,615,223 Bl 9/2003 Shih et al. in Unstructured P2P Systems”, Proceedings of the 22nd International
6,068,260 B2 12/2003 Zoltan Symposium on Reliable Distributed Systems (SRDS’03), 2003, 10
6,681,226 B2 1/2004 Bretl et al.
6,721,765 B2 4/2004 Ghosh et al. pages. . _ —
6,732,122 B2 5/2004 Zoltan Ghandeharizadeh et al., “Placement of Continuous Media in Wireless
6,738,971 B2 5/2004 Chandrasekaran et al. Peer-to-Peer Networks,” IEEE Transactions on Multimedia, vol. 6,
6,748,374 Bl 6/2004 Madan et al. No. 2, Apr. 2004, pp. 335-342.
6,877,016 Bl* 4/2005 Hartetal. ... 707/201 Joshi et al., “ShadowObjects: A Programming Model for Service
6,915,287 Bl 7/2005 Felsted et al. Replication in Distributed Object Systems,” Journal of Parallel and
6,983,277 B2* 1/2006 Yamaguchietal. 707/8 Distributed C i 1.59. No. 1. Oct. 1999. 16
7,003,531 B2* 2/2006 Holenstein et al. (strbuted LOMPpULng, vol. 27, NO. 4, et 157, 1 Pages.
7’162’689 B2 1/2007 Demers et al. “Technique for Replicating Distributed Directory Information”, May
7:200:620 B2* 4/2007 Gupta 707/201 1991, IBM Technical Disclosure Bulletin, pp. 113-120, [online]
7,200,624 B2* 4/2007 Heetal.ccoovevennennn. 707/203 [retrieved on Jun. 4, 2004] Retrieved from the Internet:<URL: https://
7,376,675 B2 5/2008 Pruet, III www.delphion.com/tdbs/tdb?0=91A%2061241>. 6 pages.
7,844,615 B2* 11/2010 Brunswig GOG6F 1% 37(;;2'; “Informix Guide to SQL Syntax, Chapter 1: SQL Statements, Alter
8.037.056 B2 10/2011 Naicken et al. Table,” [online] copyrlght 1998, Informix Soﬁwme, In'c., [Renleved
8.214.353 B2 7/2012 Tntusi of al. on Jan. 17, 2005]. Retrieved from the Internet: <URL: http://www-
8,639,677 B2 1/2014 Pruet, TII 306.ibm.comy/software/data/informix/pubs/library/datablade/dbdk/
2001/0007103 Al 7/2001 Breiter et al. sqls/Olalter.fm1 html>. 22 pages.
2002/0007363 Al 1/2002 Vaitzblit Al-Karmi et al., IBM Technical Disclosure Bulletin, “Type Modifi-
2002/0016793 Al* 2/2002 Keith, Jr. oo 707/201 cation in Object Oriented database Using Exception Handling,”
2002; 0065999 Al 5; 2002 K}llkuchl e;tﬂal' IBMTDBS#AAA93A063495, v36n12 12-93, pp. 579-580. [online]
2002/0078231 Al 6/2002 Chang etal. Dec. 1993 [Retrieved on Aug. 30, 2004] Retrieved from the Internet:
2002/0087586 Al 7/2002 Yamagishi . o -
2002/0091716 Al 7/2002 Yokouchi <URL: https://www.delphion.com/tdbs/tdb?order=93 A+63495>. 2
2002/0099726 Al 7/2002 Crudele et al. pages.
2002/0099728 Al 7/2002 Lees et al. Teresa K. Ge, Wayne W. Lee, Brenda M. Lam, United States Patent
2002/0169788 Al 11/2002 Lee et al. Application titled “Differential Management of Database Schema
%88%;8};;‘%‘9‘5 ﬁ} N }éggg% Bemers e}tfal't | 2071200 Changes,” Filed Dec. 17, 2004, Assigned to International Business
amaguchietal. ... Machines C tion, IBM. 23 .
2003/0046342 Al 372003 Felt et al. D(;lrcrﬁilrilss.l];);fn(;fﬁif(? ,“Strate ieSZiZSTechni ues for Using Oracle7
2003/0070000 Al* 4/2003 Cokeretal. .oo.o........ 709/318 nic 2. o, “otrateg 1 '8
2003/0145021 Al* 7/2003 Parkkinen 707/204 Replication: Part 17, Archives, Oracle Magazine Interactive, Meth-
2003/0149709 Al 8/2003 Banks odology [online], May/Jun. 1995, [retrieved on: Jul. 16, 2004]
2003/0154238 Al 8/2003 Murphy et al. Retrieved from the Internet: <URL: http://arthemis.na.astro.it/
2003/0158868 Al 8/2003 Zoltan oracle/oramag/archives/SSMETH html>. 11 pages.
2003/0182308 Al 9/2003 Ernst et al. Fabio A.M. Porto et al. “Persistent Object Synchronization with
2003/0200212 Al* 10/2003 Bensonetal.cccoooo... 7077 Active Relational Databases”, IEEE/ACM AN-6364906, pp. 53-62;
%88%;83?3; éé ﬁ} Hgggg Earl e; al. | Technology of Object-Oriented Languages and Systems, Aug. 1-5,
amel et al. 1999, Santa Barbara, California, IEEE Computer Society.
2003/0225760 Al 12/2003 Ruuth et al. TN, Viiavk L “Transient-Fault R. Usine Simul
2003/0236786 Al 12/2003 Shi et al. N. Vyjaykumar et al, “Iransient-Fault Recovery Using Simulta-
2004/0006563 Al 1/2004 Zwiegincew et al. neous Multithreading,” Proceedings of the 29th Annual International
2004/0025079 Al 2/2004 Srinivasan et al. Symposium on Computer Architecture (ISCA *02), 1063-6897/02,
2004/0030703 Al 2/2004 Bourbonnais et al. copyright 2002 IEEE, IEEE Computer Society, 12 pages.
2004/0030739 Al 2/2004 Yousefi’zadeh IBM Technical Disclosure Bulletin, “Referential Integrity Imple-
2004/0078379 Al 4/2004 Hinshaw et al. mentation Details and Advantages,” Mar. 1995, pp. 477-488, [online]
2004/0103342 Al 5/2004 Moser et al. [retrieved on: Jun. 4, 2004] Retrieved from the Internet: <URL:
2004/0133591 A1 7/2004 Holenstein et al. https//www.delphion.com/tdbs/tdb?0=95A%2060598>. 6 pages.
2004; 0158588 Al 8; 2004 Pll"luet’ H}{ . o IBM Informix Dynamic Server Enterprise Replication Guide, Ver-
2004 /0205066 Al 10 /2004 B flmac arjee elt : ’ sion 9.4, Mar. 2003, Part No. CTIT2NA, pp. i-ix, pp. 1 to 9-22.
2005/0021567 Al 1/2005 Holenstein et al. 707/200 IBM Informix Dynamic Server Enterprise Replication Guide, Ver-
2005/0125423 Al 6/2005 Chou et al. . e di
5005/0165818 Al 7/2005 Cole et al. 20;191.4&Mar. 2?013éPmNo.CT1T2NA, pp. i-ii, pp. Appendix A-1 to
2005/0193024 Al 9/2005 B tal. “ ndex pp. 1-18.
2005/0193035 Al 9/2005 B;zf;ze II\TI()/I(;-613111(1)21711 Oi;[(i)ce Action of Jun. 22, 2007 for U.S. Appl. No.
2005/0193040 Al 9/2005 Adiba et al. ,071 <10 pages>.
2005/0193041 Al 9/2005 Bourbonnais et al. Notice of Allowance of Jan. 14, 2008 for U.S. Appl. No. 11/061,071
2005/0278394 Al 12/2005 Oks et al. <9 pages.>.
2006/0031811 Al 2/2006 FErnst et al. Non-Final Office Action of Jun. 21, 2007 for U.S. Appl. No.
2006/0047713 Al 3/2006 Gornshtein et al. 11/060,986 <15 pages>.
2006/0136471 Al 6/2006 Geet al. Final Office Action of Dec. 28, 2007 for U.S. Appl. No. 11/060,986
2006/0190497 Al 8/2006 Inturi et al. <16 pages>.

US 9,286,346 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Advisory Action of Mar. 25, 2008 for U.S. Appl. No. 11/060,986 <3
pages>.

Non-Final Office Action of May 30, 2008 for U.S. Appl. No.
11/060,986 <14 pages>.

Final Office Action of Nov. 20, 2008 for U.S. Appl. No. 11/060,986
<21 pages>.

Non-Final Office Action of May 30, 2007 for U.S. Appl. No.
11/060,924 <13 pages>.

Final Office Action of Jan. 10, 2008 for U.S. Appl. No. 11/060,924
<21 page>.

Advisory Action of Apr. 2, 2008 for U.S. Appl. No. 11/060,924 <3
pages>.

Non-Final Office Action of Jun. 20, 2008 for U.S. Appl. No.
11/060,924 <21 pages>.

Final Office Action of Jan. 5,2009 for U.S. Appl. No. 11/060,924 <22
pages>.

Non-Final Office Action of Feb. 12, 2009 for U.S. Appl. No.
11/469,257 <17 pages>.

Non-Final Office Action for U.S. Appl. No. 11/060,986 having a
notification date of May 28, 2009 <20 pages>.

Non-Final Office Action for U.S. Appl. No. 11/060,924 having a
notification date of Aug. 17, 2009 <26 pages>.

Notice of Abandonment for U.S. Appl. No. 11/469,257 having a
notification date of Sep. 25, 2009 <2 pages>.

Final Office Action of Feb. 19, 2010 for U.S. Appl. No. 11/060,986
<33 pages>.

Final Office Action of Apr. 14, 2010 for U.S. Appl. No. 11/060,924
<25 pages>.

Joseph Silva et al.,, “An Algorithm to Compare OO-Conceptual
Schemas,” 18th IEEE International Conference on Software Mainte-
nance (ICSM’02), Oct. 2002: pp. 351-358.

Rocco De Nicola et al., “A modal logic for mobile agents,” Journal of
ACM Transactions on Computational Logic (TOCL), Jan. 2004, vol.
5(1): pp. 1-53.

Barbara Staudt Lerner, “A model for compound type changes
encountered in schema evolution,” Journal of ACM Transactions on
Database Systems (TODS), Mar. 2000, vol. 25(1): pp. 83-127.
Baowen Xu et al., “Parallel Genetic Algorithms with Schema Migra-
tion,” 26th Annual International Computer Software and Applica-
tions Conference, Aug. 2002: pp. 879-886.

T. M. Wittenburg et al., “An Adaptive Document Management Sys-
tem for Shared Multimedia Data,” IEEE International Conference on
Multimedia Computing and Systems, 1994: pp. 245-254.

Office Action History of U.S. Appl. No. 11/061,071 from Jun. 22,
2007 to Apr. 30, 2008.

Office Action History of U.S. Appl. No. 12/102,702 from Nov. 20,
2008 to Mar. 30, 2011.

Office Action History of U.S. Appl. No. 11/060,986 from Jun. 21,
2007 to Apr. 6, 2011.

Office Action History of U.S. Appl. No. 11/060,924 from May 30,
2007 to Jun. 10, 2011.

Office Action History of U.S. Appl. No. 11/469,257 from Feb. 12,
2009 to Sep. 25, 2009.

Office Action History of U.S. Appl. No. 11/016,228 from Mar. 7,
2007 to Oct. 19, 2009.

Office Action history of U.S. Appl. No. 11/060,986, from Jun. 20,
2011 to Jun. 13, 2012.

Office Action history of U.S. Appl. No. 12/102,702, from Aug. 3,
2012 to Jan. 4, 2013.

* cited by examiner

U.S. Patent

Mar. 15, 2016 Sheet 1 of 7

20
N 24

Col. 1| ee®e | Col. q

22

Prior Art
FIG. 1

US 9,286,346 B2

US 9,286,346 B2

Sheet 2 of 7

Mar. 15, 2016

U.S. Patent

¢ DId

Alddy

v

dIN

20BIS)U} BUIT
puewwosy uofes|ddy

0§

1»\\« o
by

Jadnoig

W ladooug

aoepa)u| |uln
puewwon uoiledlddy

oy

uoneoldoy uoneoiday (s)uoyeoiddy
E 89 « 99 \H sesn
- Bojejeo Bojejeo e
9g eqo|o [eqo|D
p9 - 29 7
ze 7 oc -

U.S. Patent Mar. 15, 2016 Sheet 3 of 7 US 9,286,346 B2

150 —1
154 152
(‘
Replicateld S
160
4 : 164
Triggerid > TriggerlD ~
162 168
Flag(s) 4 OrderSequence
156 166
StoredProcedureName [~ ColumnName @
Replication Trigger Header Replication Trigger Column
Table Table
FI1G. 4
. L -170
Replicate Description
))) 174
Trigger linked list
y 76-4
Trigger Header r1 6
- 176-3
Trigger Header r
- 176-2
Trigger Header r
Trigger Header ~176-1
92
- l, : 178
i — Column linked list
Register a replication-only
trigger, which is associated l
with a stored procedure.
P Trigger Columns |~ 1804
- 180-3
04 Trigger Columns
Y - Trigger Columns]f1 80-2
Invoke the stored procedure in

Trigger Columns r1 80-1

response to replication activity.

FIG. 3

FIG. 5

U.S. Patent Mar. 15, 2016 Sheet 4 of 7 US 9,286,346 B2

‘ -190
Receive an operation to apply on a replicate.

192

Any

triggers for the

replicate?

Yes 194

Traverse the trigger linked list to find any pre-commit
trigger(s) corresponding to the operation for the
replicate, and any post-commit trigger(s) for the

replicate.

No

a pre-commit trigger for
the operation for the

198
-

For each pre-commit trigger that was found for the
operation for the replicate, execute the stored
procedure associated with that pre-commit trigger.

200

Found
a post-commit
trigger?

202

For each post commit trigger that was found for the
replicate, enter a post-commit trigger request for that
trigger into the log.

|
FIG. 6

U.S. Patent

Mar. 15, 2016 Sheet 5 of 7

Read post-commit trigger
request for a transaction from
the log.

~212

v

Attach the post-commit trigger
request to a reconstituted
transaction structure associated
with the transaction.

-214

Y

In response to reading a commit
record for the transaction from
the log, add an entry associated
with the post-commit trigger
request to a post-commit
transaction list.

216

k!

Execute, by the apply
component, a stored procedure
associated with the post-commit

trigger request.

~218

FIG. 7

US 9,286,346 B2

U.S. Patent

Mar. 15, 2016

Sheet 6 of 7

(8) Cleanup

222
(1) Post commit
trigger request(s)

220

Snooper and

226

Grouper

Apply
Component

(6) Get PC

trigger
request

260

(7) Update
Progress 256
Table

V258

Post commit
progress Table

254
Receive
manager
RM Trigger [~ 252
Request List
I
]
TxN Triggers

FIG. 8

. 262
Snooper Recovery Position r

US 9,286,346 B2

(2) Rebuild Transaction
230

| ’/232

1 236

Txn Header

PC Pointer

234

240,

A

(3) Create Txn
Triggers

238

TxN Tri

iggers ?242

PC Request List

/

A

/ 248
/(5) Append
Txn to list

250

(4) Append
Requests
L~ 244

246

I
l

trigger request

Post commit

U.S. Patent Mar. 15, 2016 Sheet 7 of 7 US 9,286,346 B2

270
| 274
L = 282
— __ _ %6 |——'—‘£1
272 | || 290 |
[|) aaaaTadaa TaaaaTan | |
™ o
Processor I mv\ | | Printer | |
| 286~ o |
L 288) | | |
284
950"
_
278
Operating System ~300 =
2 NI
Database server 4 30
304
V
Database (tables) 294
/- 306

Log 296
L L - 310
Replication application
- 312

Global catalog 214
Replication trigger header table ~ 16
Replication trigger column table 3
Replication application - 318
command line interface module
Snooper - 320
Grouper 322
Apply component 324
Queue - 326
Stored procedure - 328
Post commit progress table o~ 330
; - 332

PC request list

) - - 334
RM trigger request list

FIG. 9

US 9,286,346 B2

1
REPLICATION-ONLY TRIGGERS

CROSS REFERENCE TO RELATED
APPLICATIONS

Co-pending U.S. application Ser. No. 11/061,071 entitled
“Simulating Multi-User Activity While Maintaining Original
Linear Request Order for Asynchronous Transactional
Events,” filed concurrently herewith, by Clarence Madison
Pruet III, International Business Machines Corporation
(IBM), assigned to the assignee of the present invention, is
incorporated herein by reference in its entirety.

Co-pending U.S. application Ser. No. 11/060,986 entitled
“Support for Schema Evolution in a Multi-Node Peer-to-Peer
Replication Environment,” filed concurrently herewith, by
Nagaraju Inturi and Clarence Madison Pruet I11, International
Business Machines Corporation (IBM), assigned to the
assignee of the present invention, is incorporated herein by
reference in its entirety.

Co-pending U.S. application Ser. No. 11/060,924 entitled
“Online Repair of a Replicated Table,” filed concurrently
herewith, by Rajesh Govind Naicken, Clarence Madison
Pruet 111, and Konduru Israel Rajakumar, International Busi-
ness Machines Corporation (IBM), assigned to the assignee
of'the present invention, is incorporated herein by reference in
its entirety.

BACKGROUND OF THE INVENTION

1.0 Field of the Invention

This invention relates to a database management system;
and in particular, this invention relates to replicating datain a
database management system.

2.0 Description of the Related Art

Database management systems allow large volumes of
data to be stored and accessed efficiently and conveniently in
acomputer system. In a database management system, data is
stored in database tables which organize the data into rows
and columns. FIG. 1 depicts an exemplary database table 20
which has rows 22 and columns 24. To more quickly access
the data in a database table, an index may be generated based
on one or more specified columns of the database table. In a
relational database management system, specified columns
are used to associate tables with each other.

A database management system responds to user com-
mands to store and access the data. The user commands are
typically Structured Query Language statements such as
SELECT, INSERT, UPDATE and DELETE, to select, insert,
update and delete, respectively, the data in the rows and
columns. The SQL statements typically conform to a SQL
standard as published by the American National Standards
Institute (ANSI) or the International Standards Organization
(IS0).

Departments within an enterprise may have their own data-
base management systems, typically at different sites. An
enterprise typically wants to share data throughout the enter-
prise. A technique called replication is used to share data
among multiple database management systems.

A replication system manages multiple copies of data at
one or more sites, which allows the data to be shared among
multiple database management systems. Data may be repli-
cated synchronously or asynchronously. In synchronous data
replication, a two-phase commit technique is used. In a two-
phase commit, a transaction is applied only if all intercon-
nected distributed sites agree to accept the transaction. Typi-

10

15

20

25

30

35

40

45

50

55

60

65

2

cally all hardware components and networks in the
replication system must be available at all times in for syn-
chronous replication.

Asynchronous data replication allows data to bereplicated,
at least on a limited basis, and thus allows for system and
network failures. In one type of asynchronous replication
system, referred to as primary-target, all database changes
originate at the primary database and are replicated to the
target databases. In another type of replication system,
referred to as update-anywhere, updates to each database are
applied at all other databases of the replication system.

An insert, update or delete to the tables of a database is a
transactional event. A transaction comprises one or more
transactional events that are treated as a unit. A commit is
another type of transactional event which indicates the end of
a transaction and causes the database to be changed in accor-
dance with any inserts, updates or deletes associated with the
transaction.

In some database management systems, a log writer
updates a log as transactional events occur. Each transactional
event is associated with an entry in the log, and each entry in
the log is associated with a value representing a log position.

When a replication system is used, a user typically speci-
fies the types of transactional events which cause data to be
replicated. In addition, the user typically specifies the data
which will be replicated, such as certain columns or an entire
row of a table. In some embodiments, the log writer of the
database management system marks certain transactional
events for replication in accordance with the specified types
of transactional events. The replication system reads the log,
retrieves the marked transactional events, and transmits those
transactional events to one or more specified target servers.
The target server applies the transactional events to the rep-
licated table(s) on the target server.

Various database management systems generally support
what are known as triggers. In some embodiments, a trigger
consists of special logic that is executed when rows are
inserted, updated or deleted from a table within the database.
In many systems, the trigger logic is extended by invoking a
stored procedure, typically written by a user, within the body
of'the trigger. The trigger is typically invoked by the activity
of a user with the database.

Some replication techniques use triggers to capture data.
For example, in trigger-based data capture, when the data in a
table changes, the trigger activates the replication process.
Data changes are grouped into transactions and a single trans-
action may trigger several replications if that transaction
modifies several tables.

In some applications, it would be desirable to update a
control panel and send alerts to specified persons when cer-
tain kinds of data are replicated to a table. A conventional
trigger may be used. However, in some replication systems,
the conventional trigger would be activated in response to
data changes from users in addition to data changes from
replication. In other applications such as a banking system, it
is desirable to send an acknowledgment when data from a
server at a remote branch is replicated to other servers. The
conventional trigger described above is activated in response
to data changing in a table, and therefore cannot be used to
notify a source of replicated data that the data has been
applied at a target server or to notify the source of replicated
data that the data was not applied at the target server. There-
fore, there is a need for a technique to provide an improved
trigger.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become

US 9,286,346 B2

3

apparent upon reading and understanding the present speci-
fication, various embodiments of a method, system and article
of manufacture provide a trigger in a database management
system. The database management system has a source server
and a target server. At least one replication-only trigger which
is associated with a replication operation is registered. The
replication-only trigger is associated with a stored procedure.
The stored procedure is invoked in response to an occurrence
of'the replication operation in replicating data from the source
server to the target server.

In some embodiments, the replication-only trigger is
invoked prior to a commit of a replicated transaction. In other
embodiments, the replication-only trigger is invoked after a
replicated transaction has committed. The replication-only
trigger can be used to notify a source of replicated data that
the data was successfully applied on a target server. Alter-
nately, the replication-only trigger can be used to notify the
source of replicated data that the data failed to be applied on
the target server.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the following description in con-
junction with the accompanying drawings, in which:

FIG. 1 depicts a block diagram of an illustrative table of a
database management system;

FIG. 2 depicts a diagram of an embodiment of a replication
environment suitable for use with the present invention;

FIG. 3 depicts a high-level flowchart of an embodiment of
registering and invoking a replication-only trigger;

FIG. 4 depicts a block diagram of an embodiment of a
replication trigger header table and a replication trigger col-
umn table of the global catalog;

FIG. 5 depicts a diagram of an embodiment of a replicate
description structure which is associated with a trigger linked
list having multiple triggers of which one trigger is associated
with a column linked list having multiple columns;

FIG. 6 depicts a flowchart of an embodiment of the pro-
cessing of a pre-commit trigger and a portion of the process-
ing of a post-commit trigger;

FIG. 7 depicts a high-level flowchart of an embodiment of
the processing of a post-commit trigger request by the repli-
cation application;

FIG. 8 depicts a block diagram illustrating an embodiment
of the processing performed in connection with a post-com-
mit trigger; and

FIG. 9 depicts an embodiment of an illustrative computer
system which uses various embodiments of the present inven-
tion.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to some of the figures.

DETAILED DESCRIPTION

After considering the following description, those skilled
in the art will clearly realize that the teachings of the various
embodiments of the present invention can be utilized to rep-
licate data in a database management system. A method,
system and article of manufacture provide a replication-only
trigger in a database management system. The database man-
agement system has a source server and a target server. At
least one replication-only trigger which is associated with a
replication operation is configured. The replication-only trig-
ger is associated with a stored procedure. The stored proce-

10

15

20

25

30

35

40

45

50

55

60

65

4

dure is invoked in response to an occurrence of the replication
operation in replicating data from the source server to the
target server.

In various embodiments, a replication-only trigger is asso-
ciated with a stored procedure which is executed in response
to activity within the replication of data from a source to a
target. In some embodiments, the data of the replicated row is
passed to the stored procedure. A replication-only trigger is
not executed by the database server as a conventional trigger
which would be invoked by the activity of a client to the
database. The replication-only trigger is invoked in response
to replication activity.

In various embodiments, the replication-only trigger is
registered as part of the replication configuration, rather than
being defined as part of conventional SQL trigger definition.

A database server is a software application which imple-
ments a database management system. A replication server is
a database server that participates in data replication. Mul-
tiple database servers can execute on the same physical server
computer, and each database server can participate in repli-
cation.

In replication, changes to one or more tables of a database
on a source replication server are collected, transported and
applied to one or more corresponding tables on the replication
target servers. A replication application implements the rep-
lication server functionality.

To replicate data, a user defines a replicate, that is, the user
provides replicate information. A replicate is associated with
one or more replication servers, also referred to as partici-
pants, a table to replicate among the participants, and the
columns of the table that will be replicated. The replicate is
also associated with various attributes which describe how to
replicate the data among the participants, such as conflict
resolution rules.

The replication server maintains replication information in
a global catalog. A replicate definition comprises one or more
tables in the global catalog and contains the replication infor-
mation. The replicate definition comprises information speci-
fying the replicate configuration and environment, informa-
tion specifying what data is to be replicated, for example,
whether to replicate particular columns or an entire row, and
information specifying the conditions under which the data
should be replicated. The replicate definition also contains
various specified attributes of the replicate such as how to
handle any conflicts during replication.

The replication application creates the global catalog when
the replication application is initialized. In embodiments
which use the IBM Informix Dynamic Server, the global
catalog is called the syscdr database.

Each replication server typically has its own local copy of
the global catalog and maintains one or more tables in the
global catalog to keep track of the replicate definition and
state. The global catalog is created when a database server is
defined as a replication server. The tables in a global catalog
on one replication server are typically automatically repli-
cated to the global catalogs of the other replication servers.

FIG. 2 depicts a diagram of an embodiment of a replication
environment suitable for use with the present invention. A
source replication server 30 and a target replication server 32
are participants, or nodes, in a replicate. The source replica-
tion server 30 and the target replication server 32 will be
referred to as a source server and a target server. The source
server 30 and the target server typically execute on different
computer systems. In the source server 30, one or more user
applications 34 are accessing and changing the tables of a
database 36. The changes to the database 36 are stored in alog
38. The changes to the database are transactional events. The

US 9,286,346 B2

5

replication application comprises a snooper 40 and a grouper
42. The snooper 40 reads the log 38 and captures various
changes to the database in accordance with the replicate defi-
nition. The grouper 42 assembles the captured changes in
accordance with their associated transactions to provide
transaction replication data 43 and places the transaction
replication data 43 in a queue 44 to send to the target server 32
via the network interface (NIF) 50. Transaction replication
data is also referred to as replication data or replicated data.
As indicated by arrows 45, the queue 44 can be used to send
and receive data. The queue 44 comprises a send queue to
send datato the target server 32, and a receive queue to receive
data from the target server 32.

In the target server 32, the transaction replication data 51 is
received in a queue 52. An apply component 54 retrieves the
transaction replication data 51 from the queue 52 and applies
the replication data 51 to the appropriate table and column(s)
in the database 56. For example, if the replicated data com-
prises an insert operation, the apply component 54 performs
the insert operation on the table at the target server.

The source and target servers, 30 and 32, have global
catalogs, 62 and 64, and a replication application command
line interface, 66 and 68, respectively. The replication appli-
cation command line interface 66 and 68 receives commands
for the replication application. The replication application
command line interface 66 and 68 is also used to update the
global catalogs 62 and 64, respectively.

In various embodiments, a replication application on a
replication server typically comprises a snooper, grouper and
apply component. In this way, data can be replicated both to
and from the replication server.

In some embodiments, the replication server computer
comprises multiple central processing units or processors,
and various portions of the replication operation are executed
concurrently. For example, the apply component may execute
on one or more processors and each portion of the apply
component that executes on one processor is referred to as an
apply thread.

FIG. 3 depicts a high-level flowchart of an embodiment of
registering and invoking a replication-only trigger. In step 92,
the replication-only trigger is registered. Typically the repli-
cation-only trigger is registered in the global catalog. The
replication-only trigger is associated with a stored procedure.
In step 94, the stored procedure is invoked in response to
activity within the replication application.

Various embodiments of the invention will be described
with respect to the IBM® (Registered Trademark of Interna-
tional Business Machines Corporation) Informix® (Regis-
tered Trademark of International Business Machines Corpo-
ration) Dynamic Server and the IBM Informix Enterprise
Replication server. However, the invention is not meant to be
limited to IBM Informix Dynamic Server or IBM Informix
Enterprise Replication server and may be used with other
database management systems and other replication servers.

In various embodiments, the replication-only trigger func-
tionality is implemented in the replication application. The
replication-only trigger provides the ability to extend the
logic of replication by the invocation of an associated stored
procedure. For example, a user at a source server may want to
receive some form of an acknowledgment from an apply
thread when a row has been successfully applied on a target
server. In another example, an application may invoke special
logic in the event that a row could not be applied on a target
server.

There are two broad categories of replication-only trig-
gers—pre-commit triggers and post-commit triggers. Pre-
commit triggers are those replication-only triggers which are

10

15

20

25

30

35

40

45

50

55

60

65

6

executed within the transaction that applies the data on a
target server. The pre-commit triggers are executed within the
application of a transaction by the apply component and
comprise pre-commit insert triggers, pre-commit update trig-
gers, and pre-commit delete triggers.

The apply component attempts to commit the replicated
transaction data in response to a commit in the replicated
transaction data. Post-commit triggers are those replication
triggers which are executed after the apply component has
applied the commit in the replicated transaction data, or after
the apply component failed to apply the commit in the repli-
cated transaction data. Post-commit triggers comprise post-
commit-success triggers and post-commit-failure triggers.
Post-commit-success triggers are those post-commit replica-
tion-only triggers which are used to indicate that the repli-
cated transaction data was successfully applied on the target
server. Post-commit-failure triggers are those post-commit
replication-only triggers which are used to indicate that the
replicated transaction data was not successfully applied on
the target server.

Invarious embodiments, a post-commit trigger is executed
only once for a transactional event of a transaction. In some
embodiments, the post-commit triggers are executed in the
same order as the commit of their associated transactions. In
various embodiments, a post-commit trigger is not executed
until the apply component has applied the commit associated
with the replicated transaction data associated with the trig-
ger, or until after the apply component attempted to apply the
commit associated with the replicated transaction data and
failed to commit the replicated transaction data associated
with the trigger.

In some embodiments, a single post-commit trigger
defined on a replicate may result in multiple executions of the
post-commit trigger. For example, a post-commit failure trig-
ger is defined for a replicate, and the replicated data of a
transaction comprises insert and update operations. After the
apply component has received and applied the commit for the
transaction, the post-commit failure trigger will be executed
for the insert operation and the post-commit failure trigger
will be executed for the update operation.

An embodiment of registering a replication-only trigger
will now be described. A replication-only trigger is registered
by using a replication application utility, for example, in the
IBM Informix dynamic server, a cdr utility, rather than by
using a data definition language (DDL) statement. The cdr
utility is a tool which is used to administer replication on the
IBM Informix Dynamic Server. An exemplary command syn-
tax to create a pre-commit trigger is as follows:
cdr define trigger-connect=servl-replicate=replname-

name=sp-insert coll col2 col3

The “-connect” option specifies the server which will
execute the define trigger command and which will be
accessed to retrieve information from and write information
to the global catalog. The “-replicate” option specifies the
replicate name, “replname.” The “-name” option specifies the
name of the replication-only trigger stored procedure, “sp.”
The “~insert” option specifies that the replication-only trigger
is a pre-commit insert trigger. The names of the columns
which are passed to the stored procedure follow the “-insert”
option.

The pre-commit trigger defined above results in an
“execute procedure sp(source_server, source_commit_time,
coll, col2, col3)” to be performed with any insert of a row into
the tables represented by the replicate named replname. The
name of the replication-only trigger, “sp”, the name of the

US 9,286,346 B2

7

source server, the source commit time, and columns coll,
col2 and col3 are passed as arguments to the replication
trigger stored procedure.

In other embodiments, an “-update” option specifies that
the trigger is a pre-commit update replication only trigger
which is fired in response to an update operation to the table
of'the replicate. A “-delete” option specifies that the trigger is
a pre-commit delete replication-only trigger which is fired in
response to a delete operation to the table of the replicate.

An exemplary command to create a post-commit replica-
tion-only trigger is as follows:
cdr define trigger-connect=servl-replicate=replname-

name=postcommit_sp-postfail coll col2 col3
The post-commit replication-only trigger defined by the com-
mand above results in a replication trigger stored procedure
named postcommit_sp to be executed after the data for rep-
licate called replname has failed to be replicated after receiv-
ing the replicated commit for the transaction. The format for
executing the stored procedure of the post-commit trigger is
“execute procedure postcommit_sp(source_server, source_
commit_time, operation, coll, col2, col3).” The operation is
associated with the operation associated with the post-com-
mit trigger, such as an insert, update or delete.

In the define trigger command, the “-postfail” option speci-
fies that the trigger is a post-commit failure trigger. A “-post-
success” option specifies that the trigger is a post-commit
success trigger.

FIG. 4 depicts a diagram of an embodiment of a replication
trigger header table 150 and a replication trigger column table
152 of the global catalog. The registration of a replication-
only trigger causes information about the replication-only
trigger to be stored in the replication trigger header table 150
and, in some embodiments, the replication trigger column
table 152.

Each replicate is associated with a distinct replicate iden-
tifier. The replication trigger header table 150 comprises the
replicate identifier (Replicateld) 154 which specifies the rep-
licate that the replication trigger is to be applied, the name of
the replication trigger stored procedure (StoredProcedure-
Name) to be executed 156, one or more flags 158 which
identify the type of replication trigger, and a trigger identifier
(Triggerld) 160. The trigger identifier 160 is unique for each
replication-only trigger. In various embodiments, the flags
comprise a post-commit success trigger flag, a post-commit
failure trigger flag, an insert flag, an update flag and a delete
flag. The post-commit trigger flag indicates that the replica-
tion-only trigger is a post-commit success trigger. The post-
commit failure trigger flag indicates that the replication-only
trigger is a post-commit failure trigger. The insert flag indi-
cates that the replication-only trigger is a pre-commit repli-
cation-only trigger which is associated with an insert opera-
tion. The update flag indicates that the replication-only
trigger is a pre-commit replication-only trigger which is asso-
ciated with an update operation. The delete flag indicates that
the replication-only trigger is a pre-commit replication-only
trigger which is associated with a delete operation.

The replication trigger column table 152 is associated with
the replication trigger header table 150. The replication trig-
ger column table 152 comprises the trigger identifier (Trig-
gerld) 164, the column name which (ColumnName) 166
which is to be passed to the stored procedure, and an order
sequence order number (OrderSequence) 168. The order
sequence number 168 identifies the order of the column,
specified by the column name, in a parameter list that is
passed to the associated replication trigger stored procedure.

The replication trigger header table 150 and the replication
trigger column table 152 are updated in response to the define

10

15

20

25

30

35

40

45

50

55

60

65

8

trigger command. The flags are set in accordance with the
options specified by in the define trigger command. For
example, in response to the exemplary command to create the
pre-commit insert trigger described above, the replication
application command line interface inserts a row into the
replication trigger header table on the database server speci-
fied by the connect option in the define replicate command.
The row contains a replicate identifier based on the specified
replicate name, a distinct trigger identifier which is deter-
mined by the replication application command line interface,
aninsert flag which is set, and the name of the specified stored
procedure in the define trigger command. In addition, the
replication application command line interface will insert a
row into the replication trigger column table on the database
server specified by the connect option for each specified
column in the define trigger command. For example, a row is
inserted into the replication trigger column table containing
the trigger identifier, an order sequence number of one and a
column name of coll. The order sequence number is based on
the position of the column in a parameter list which is passed
to the replication trigger stored procedure. The columns are
specified in the define trigger command, for example, coll,
col2 and col3, and the order sequence number is based on the
order of the column names in the define trigger command. For
example, the order sequence number for coil is one; the order
sequence number for col2 is two; and the order sequence
number for col3 is three.

If the “-update” option is specified in the define trigger
command, the update flag is set. If the “-delete” option is
specified in the define trigger command, the delete flag is set.

When the “-postfailure” option is specified in the define
trigger command, the replication application sets the post-
commit failure flag. When the “-postsuccess” option is speci-
fied in the define trigger command, the replication application
command line interface sets the post-commit success flag.

FIG. 5 depicts a diagram of an embodiment of a replicate
description structure 170 which is associated with a trigger
linked list 174 having multiple triggers of which one trigger
176-1 is associated with a column linked list 178 having
multiple columns. Each replicate is associated with a repli-
cate description structure 170 which describes the data that is
being applied. The replicate description structure 170 is typi-
cally cached in the memory space used by the replicate defi-
nition. The replicate description structure 170 is used by the
apply component.

The replicate description structure contains various flags
which indicate whether any replication-only triggers have
been defined for the replicate. In various embodiments, the
replicate description structure contains a post-commit failure
flag, a post-commit success flag, an insert flag, an update flag
and a delete flag. The post-commit failure flag is set in the
replicate description structure if one or more post-commit
failure triggers have been defined for the replicate. The post-
commit success flag is set in the replicate description struc-
ture if one or more-post commit success triggers have been
defined for the replicate. The insert flag, the update flag and
the delete flag of the replicate description structure are set if
one or more pre-commit insert triggers, one or more pre-
commit update triggers and one or more pre-commit delete
triggers, respectively, have been defined for the replicate.

The replicate description structure 170 also contains a
pointer to the trigger linked list 174 of replication trigger
header structures (Trigger Header) 176-1 to 176-4. Each rep-
lication trigger header structure 176 in the trigger linked list
174 comprises the information from the replication trigger
header table 150 (FIG. 4). The replication trigger header
structure contains a pointer to a column linked list 178 of one

US 9,286,346 B2

9

or more replication trigger column structures 180-1 to 180-4,
if any. A replication trigger column structure 180 comprises
the information from the replication trigger column table 152
(FIG. 4). In various embodiments, updates to the replicate
description structure 170 are protected by using an array of
read/write mutexes which are hashed by the replicate identi-
fier.

To process pre-commit triggers, prior to applying a repli-
cated insert, update or delete operation, the apply component
of'the replication application checks the replicate description
structure 170 (FIG. 5) to determine if any pre-commit triggers
have been registered for the replicate based on the insert,
update and delete flags. If a pre-commit trigger has been
registered, the trigger linked list 174 (FIG. 5) is traversed to
find any replication-only triggers corresponding to the opera-
tion. In various embodiments, when a replication-only trigger
corresponding to the operation is found, an execute procedure
statement is formatted using the information in the replicated
row and the associated replication-only trigger stored proce-
dure is executed. For a replication-only trigger which is asso-
ciated with an update operation if any column names were
specified in the define trigger command, one or more columns
from the local row are passed to the replication trigger stored
procedure as respective arguments based on the replication
trigger column structures of the column linked list associated
with the replication trigger header structure of the trigger.

The processing of a post-commit trigger is different from
the processing of a pre-commit trigger. To process a post-
commit trigger, prior to processing a commit in the replicated
transaction data, the replication application checks the repli-
cate description structure 170 (FIG. 5) to determine if any
post-commit triggers have been registered based on the post-
commit success and failure flags. If any post-commit triggers
have been registered, the trigger linked list 174 (FIG. 5) is
traversed to find the post-commit triggers. For a post-commit
trigger, a post-commit trigger request,is posted to the log on
the target server. The post-commit trigger request is to request
the execution of the stored procedure associated with the
post-commit trigger. Subsequently the stored procedure is
executed after the transaction associated with the post-com-
mit trigger request has committed or failed to commit.

FIG. 6 depicts a flowchart of an embodiment of the pro-
cessing of a pre-commit trigger and a portion of the process-
ing of a post-commit trigger. In various embodiments, the
flowchart of FIG. 6 is implemented in the replication appli-
cation, typically the apply component.

In step 190, an operation or transactional event to apply on
areplicate is received. In various embodiments, the operation
to replicate is received from the receive queue. The operation
may be an insert operation, update operation, delete operation
or a commit.

Step 192 determines whether there any triggers for the
replicate. Typically, the apply component examines the pre-
commit success, post-commit failure, insert, update and
delete flags in the replicate description structure, and if any of
those flags are set, the apply component determines that the
replicate has a trigger. If step 192 determines that there are no
triggers for the replication, step 192 proceeds to step 190.

In response to step 192 determining that there is a trigger,
in step 194, the trigger linked list is traversed to find any
pre-commit trigger(s) corresponding to the operation for the
replicate, and any post-commit trigger(s) for the replicate. In
various embodiments, the replicate description structure 170
(FIG. 5) is searched for the triggers. If the insert flag is set in
the replication trigger header structure and the operation is an
insert, the replication-only trigger is a pre-commit insert rep-
lication-only trigger. If the delete flag is set in the replication

40

45

10

trigger header structure and the operation is a delete, the
replication-only trigger is a pre-commit delete replication-
only trigger. If the update flag is set in the replication trigger
header structure and the operation is an update, the replica-
tion-only trigger is a pre-commit update replication-only trig-
ger. The apply component also examines the post-commit
success and failure flags in the replication trigger header
structure. If any of the post-commit success and failure flags
are set, a post-commit trigger has been defined.

Step 196 determines whether a pre-commit trigger for the
operation has been found. In response to step 196 determining
that a pre-commit trigger for the operation was found, in step
198, for each pre-commit trigger that was found for the opera-
tion for the replicate, the stored procedure associated with
that pre-commit trigger is executed. If step 192 determines
that there are no triggers for the replicate, step 192 proceeds
back to step 190. If step 196 determines that no pre-commit
trigger for the operation for the replicate was found, step 196
proceeds to step 200.

Step 200 determines whether any post-commit triggers
were found for the replicate. If step 200 does not find a
post-commit trigger, step 200 proceeds to step 190.

If step 200 determines that at least one post-commit trigger
was found, in step 202, for each post-commit trigger that was
found, a post-commit trigger request for that trigger is entered
into the log. The post-commit trigger request typically com-
prises the replicate identifier, the trigger identifier, an indica-
tor of whether the post-commit trigger request is for a success
or failure post-commit trigger, the parameters of the replica-
tion trigger stored procedure, the name of the replication
trigger stored procedure and the replication trigger stored
procedure itself. In some embodiments, the post-commit trig-
ger request also contains information describing the opera-
tion, such as an insert, update or delete, for which the post-
commit trigger was invoked. The post-commit trigger request
is also associated with the transaction that is associated with
the operation which was received. Step 202 proceeds to step
190.

In some embodiments, an operation is associated with one
ormore pre-commit triggers. For example, multiple pre-com-
mit insert triggers can be defined on a replicate. In various
embodiments, an operation is associated with one or more
post-commit triggers. For example, a post-commit success
trigger and a post-commit failure trigger can be defined on the
replicate, multiple post-commit failure triggers can be
defined on the replicate, or multiple post-commit success
triggers can be defined on the replicate.

FIG. 7 depicts a high-level flowchart of an embodiment of
the processing performed by the apply component for a post-
commit trigger request which was posted to the log. In step
212, the post-commit trigger request for a transaction is read
from the log. In various embodiments, the snooper reads the
post-commit trigger request from the log. In step 214, the
post-commit trigger request is attached to a reconstituted
transaction structure associated with the transaction. In vari-
ous embodiments, the grouper attaches the post-commit trig-
ger request to the reconstituted transaction structure. In step
216, in response to reading a commit for the transaction
associated with the post-commit trigger request from the log,
an entry associated with the post-commit trigger is added to a
post-commit transaction list. In step 218, the apply compo-
nent executes a stored procedure which is associated with the
post-commit trigger request.

FIG. 8 depicts a diagram illustrating an embodiment of the
processing performed in connection with a post-commit trig-
ger. The apply component 220 determines that a post-commit

US 9,286,346 B2

11

trigger has been set for a transaction. As indicated by arrow
222, the post-commit trigger request is posted to the log 224.

As the snooper of the snooper and grouper 226 reads the
log as indicated by arrow 228, the snooper and grouper 226
captures the post-commit trigger request and rebuilds the
transaction, as indicated by arrow 230 in a reconstituted trans-
action structure 232 which is used for replication. The
snooper and grouper 226 attaches the post-commit trigger
request, via post-commit (PC) pointer 234, to the transaction
header 236 of the reconstituted transaction structure 232.

The reconstituted post-commit trigger requests are posted
to the transaction header 236 by creating a transaction trigger
structure (TxN Triggers) 238 when the first post-commit trig-
ger request for a transaction is detected by the snooper, as
indicated by arrow 240. The individual post-commit trigger
request 246 is then attached to the transaction trigger struc-
ture 232 by appending it to a first-in-first-out (FIFO) list (PC
Request List) 242, as indicated by arrow 244. As shown by
arrow 248, in response to the snooper and grouper 226 read-
ing the commit record for a transaction that has a post-commit
trigger request, the transaction trigger structure 238 for that
transaction is attached to the tail of a FIFO list 250, that is, the
receive manager (RM) Trigger Request List 252 which is
contained within a receive manager (RM) control block 254
of the replication application. The RM Trigger Request List
252 is maintained in commit order as the transactions are
snooped.

Typically the apply component 220 is processing repli-
cated transaction data from other participants within the rep-
lication environment. If there is no work that the apply com-
ponent 220 is currently able to do, the apply component 220
examines the RM Trigger Request List 252. If a transaction is
found in the RM Trigger Request List 252, the apply compo-
nent 220 retrieves the post-commit trigger request for the
transaction as indicated by arrow 256 and processes the stored
procedure associated with the post-commit trigger request,
passing any parameters contained within the post-commit
trigger request.

The apply component 220 maintains a post-commit
progress table 258. Using the post-commit progress table
ensures that the post-commit triggers are executed only once.
As indicated by arrow 260, the apply thread 220 updates the
post-commit progress table 258. In various embodiments, the
post-commit progress table 258 has a single row which con-
tains the log position of the requesting transaction’s commit
point that was last asynchronously processed. In some
embodiments, the post-commit progress table 258 is the com-
mit progress table described in U.S. application Ser. No.
11/061,071 entitled “Simulating Multi-User Activity While
Maintaining Original Linear Request Order for Asynchro-
nous Transactional Events,” filed concurrently herewith, by
Clarence Madison Pruet I1I, International Business Machines
Corporation (IBM).

In various embodiments the apply component has multiple
apply threads. Although multiple apply threads typically pro-
cess data in parallel, the apply threads commit in transactional
order. One reason for the apply threads committing in trans-
actional order is so that the post-commit progress table 258
can be correctly maintained. Various embodiments of main-
taining the original linear request order for asynchronous
transactional events in a database management system are
described in U.S. application Ser. No. 11/061,071 entitled
“Simulating Multi-User Activity While Maintaining Original
Linear Request Order for Asynchronous Transactional
Events,” filed concurrently herewith, by Clarence Madison
Pruet III, International Business Machines Corporation
(IBM).

10

15

20

25

30

35

40

45

50

55

60

65

12

In various embodiments, prior to processing a transaction
associated with a post-commit trigger request, the apply com-
ponent examines a cached copy of the post-commit progress
table 258 to determine if the transaction has already been
processed. The apply component compares the log position in
the post-commit progress table to the log position of the
transaction associated with the post-commit trigger request.
If the log position in the post-commit progress table is less
than the log position of the transaction associated with the
post-commit trigger request, the stored procedure associated
with the post-commit trigger request may be invoked. For a
post-commit success trigger, the apply component deter-
mines whether the operation, that is, the transactional event,
associated with the post commit trigger request was success-
fully committed. If so, the apply component invokes the
stored procedure associated with the post-commit trigger
request, passing any parameters contained within the post-
commit trigger request; otherwise the apply component does
not invoke the stored procedure. For a post-commit failure
trigger, the apply component determines whether the opera-
tion, that is, the transactional event, associated with the post
commit trigger request failed to be committed. If'so, the apply
component invokes the stored procedure associated with the
post-commit trigger request, passing any parameters con-
tained within the post-commit trigger request; otherwise the
apply component does not invoke the stored procedure. Ifthe
log position in the post-commit progress table is not less than
the log position of the transaction associated with the post-
commit trigger request, the stored procedure associated with
the post-commit trigger request has already been executed for
the transaction and is not invoked.

When the apply 220 finishes processing a snooped trans-
action containing a post-commit request, the apply 200 noti-
fies the snooper and grouper 226 which then performs a
clean-up, as indicated by arrow 260, if any, and may advance
the snooper recovery position 262. For example, during the
clean-up, the data structures associated with the post-commit
trigger request for the transaction which was processed are
removed to free memory space.

FIG. 9 depicts an embodiment of an illustrative computer
system 270 which uses various embodiments of the present
invention. The computer system 270 comprises a processor
272, display 274, input interfaces (I/F) 276, communications
interface 278, memory 280 and output interface(s) 282, all
conventionally coupled by one or more buses 284. The input
interfaces 276 comprise a keyboard 286 and amouse 288. The
output interface 282 comprises a printer 290. The communi-
cations interface 278 is a network interface (NI) that allows
the computer 270 to communicate via the network 254. The
communications interface 278 may be coupled to the network
296 via a transmission medium 294 such as a network trans-
mission line, for example twisted pair, coaxial cable or fiber
optic cable. In another embodiment, the communications
interface 278 provides a wireless interface, that is, the com-
munications interface 278 uses a wireless transmission
medium.

The memory 280 generally comprises different modalities,
illustratively semiconductor memory, such as random access
memory (RAM), and disk drives. In various embodiments,
the memory 280 stores an operating system 300, the database
server 302, database tables 304, the log 306, and the replica-
tion application 310. In various embodiments, the replication
application 310 comprises the global catalog 312, the repli-
cation trigger header table 314, the replication trigger column
table 316, the replication application command line interface
module 318, the snooper 320, the grouper 322, the apply
component 324, the queue 326, a stored procedure 328, the

US 9,286,346 B2

13

post-commit progress table 330, and various data structures,
including and not limited to the PC request list 332 and the
RM Trigger request list 334.

In various embodiments, the specific software instructions,
data structures and data that implement various embodiments
of the present invention are typically incorporated in the
replication application 310. Generally, an embodiment of the
present invention is tangibly embodied in a computer-read-
able medium, for example, the memory 280, and is comprised
of instructions which, when executed by the processor 272,
cause the computer system 270 to utilize the present inven-
tion. The memory 280 may store the software instructions,
data structures and data for any of the operating system 300,
a database server 302, database tables 304, a log 306, and a
replication application 310 in semiconductor memory, in disk
memory, or a combination thereof. Other computer memory
devices presently known or that become known in the future,
or combination thereof, may be used for memory 280.

The operating system 300 may be implemented by any
conventional operating system such as AIX® (Registered
Trademark of International Business Machines Corporation),
UNIX® (UNIX is a registered trademark of the Open Group
in the United States and other countries), Windows® (Regis-
tered Trademark of Microsoft Corporation), Linux® (Regis-
tered trademark of Linus Torvalds), Solaris® (Registered
trademark of Sun Microsystems Inc.) and HP-UX® (Regis-
tered trademark of Hewlett-Packard Development Company,
L.P).

In various embodiments, the database server 302 is the
IBM Informix Dynamic Server. However, the invention is not
meant to be limited to the IBM Informix Dynamic Server and
may be used with other database management systems.

In various embodiments, the present invention may be
implemented as a method, apparatus, or article of manufac-
ture using standard programming and/or engineering tech-
niques to produce software, firmware, hardware, or any com-
bination thereof. The term “article of manufacture” (or
alternatively, “computer program product™) as used herein is
intended to encompass a computer program accessible from
any computer-readable device, carrier or media. In addition,
the software in which various embodiments are implemented
may be accessible through the transmission medium, for
example, from a server over the network. The article of manu-
facture in which the code is implemented also encompasses
transmission media, such as the network transmission line
and wireless transmission media. Thus the article of manu-
facture also comprises the medium in which the code is
embedded. Those skilled in the art will recognize that many
modifications may be made to this configuration without
departing from the scope of the present invention.

The exemplary computer system illustrated in FIG. 9 is not
intended to limit the present invention. Other alternative hard-
ware environments may be used without departing from the
scope of the present invention.

The foregoing detailed description of various embodi-
ments of the invention has been presented for the purposes of
illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the above
teachings. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended thereto.

What is claimed is:

1. A method of managing replicated data at a target data-
base, comprising:

registering a replication-only trigger specifying a replica-

tion condition and a stored procedure, the replication-

10

15

20

25

30

35

40

45

50

55

60

14

only trigger configured to invoke the stored procedure
only upon detecting a replication event at the target
database that satisfies the replication condition, wherein
the replication-only trigger comprises one of: (i) a pre-
commit trigger, and (ii) a post-commit trigger, wherein
the pre-commit trigger executes within a transaction that
applies the replication event to data in the target data-
base, wherein the post-commit trigger creates an indica-
tion specifying whether the replication event is success-
fully applied to the data in the target database, wherein
the replication-only trigger comprises a replication trig-
ger header associated with a replication trigger column;

monitoring, at the target database, replication events
received from a source database to detect when the rep-
lication condition is satisfied;

responsive to detecting a first replication event that satisfies

the replication condition specified in the replication-
only trigger, invoking the stored procedure specified by
the replication-only trigger at the target database; and

updating a progress table that indicates a commit point of a

transaction which was last processed, wherein invoking
the specified stored procedure is based on the commit
point of the progress table.

2. The method of claim 1, wherein the replication-only
trigger is a post-commit trigger, wherein the post-commit
trigger is configured to be invoked only once, wherein the
replication condition specifies a commit operation, and
wherein the stored procedure is invoked after the commit
operation has completed.

3. The method of claim 2, further comprising:

upon detecting that the replication-only trigger is a post-

commit trigger, entering a post-commit trigger request
into a log; and

wherein invoking the specified stored procedure is further

in response to processing the post-commit trigger
request in the log.

4. The method of claim 1, wherein the replication trigger
header specifies: (i) a replicate identifier the replication-only
trigger header is applied to, (ii) a name of the stored proce-
dure, and (iii) a set of flags identifying a type of the replica-
tion-only trigger, wherein the replication trigger column
specifies: (i) the trigger identifier, (ii) a name of a database
column passed to the stored procedure, and (iii) a sequence
order number which identifies an order of the database col-
umn passed to the stored procedure.

5. The method of claim 1, wherein the replication-only
trigger is a post-commit-success trigger, wherein the replica-
tion condition specifies a successful replication of at least a
portion of the replication event.

6. The method of claim 1, wherein the replication-only
trigger is a post-commit-failure trigger, wherein the replica-
tion condition specifies a failure to replicate at least a portion
of the replication event.

7. The method of claim 1, wherein the stored procedure
specified in the replication-only trigger is configured to be
invoked only once, wherein registering the replication-only
trigger comprises specifying a set of attributes of the replica-
tion-only trigger, wherein the set of attributes comprise: (i) a
name of a server hosting the target database, (ii) a replicate
name, (iii) a name of the stored procedure, (iv) a type of the
replication-only trigger, and (v) a set of database columns
passed to the stored procedure.

8. The method of claim 1, further comprising:

providing a plurality of other replication-only triggers,

each specifying a respective replication condition and a
respective stored procedure, wherein each of the repli-
cation conditions specify a respective commit operation

US 9,286,346 B2

15

for at least a portion of an associated transaction, and
wherein the stored procedures are invoked in an order
corresponding to a commit order of the associated trans-
actions.

9. The method of claim 1, wherein the replication condition
specifies a transactional event which occurs prior to an asso-
ciated commit operation, and wherein the stored procedure is
invoked prior to the associated commit operation.

10. The method of claim 1, wherein the replication-only
trigger is a pre-commit trigger, wherein the replication con-
dition specifies at least one of an insert operation, an update
operation and a delete operation, wherein the transaction is at
least one of an insert transaction, an update transaction, and a
delete transaction.

11. A computer program product for managing replicated
data at a target database, comprising:

a non-transitory computer-readable storage medium hav-
ing computer readable program code embodied there-
with, the computer readable program code executable to
perform an operation comprising:

registering a replication-only trigger specifying a replica-
tion condition and a stored procedure, the replication-
only trigger configured to invoke the stored procedure
only upon detecting a replication event at the target
database that satisfies the replication condition, wherein
the replication-only trigger comprises one of: (i) a pre-
commit trigger, and (ii) a post-commit trigger, wherein
the pre-commit trigger executes within a transaction that
applies the replication event to data in the target data-
base, wherein the post-commit trigger creates an indica-
tion specifying whether the replication event is success-
fully applied to the data in the target database wherein
the stored procedure specified in the replication-only
trigger is configured to be invoked only once, wherein
registering the replication-only trigger comprises speci-
fying a set of attributes of the replication-only trigger,
wherein the set of attributes comprise: (i) a name of a
server hosting the target database, (ii) a replicate name,
(iii) a name of the stored procedure, (iv) a type of the
replication-only trigger, and (v) a set of database col-
umns passed to the stored procedure;

monitoring, at the target database, replication events
received from a source database to detect when the rep-
lication condition is satisfied; and

responsive to detecting a first replication event that satisfies
the replication condition specified in the replication-
only trigger, invoking the stored procedure specified by
the replication-only trigger at the target database.

12. The computer program product of claim 11, wherein
the replication-only trigger is a post-commit trigger, wherein
the post-commit trigger is configured to be invoked only
once, wherein the replication condition specifies a commit
operation, and wherein the stored procedure is invoked after
the commit operation has completed.

13. The computer program product of claim 12, the opera-
tion further comprising:

upon detecting that the replication-only trigger is a post-
commit trigger, enter a post-commit trigger request into
alog; and

wherein the specified stored procedure is invoked further in
response to processing the post-commit trigger request
in the log.

14. The computer program product of claim 11, wherein
the replication-only trigger further comprises a replication
trigger header, wherein the replication trigger header speci-
fies: (i) a replicate identifier the replication-only trigger
header is applied to, (ii) a name of the stored procedure, and

10

15

20

25

30

35

40

45

50

55

60

65

16

(iii) a set of flags identifying a type of the replication-only
trigger, wherein a replication trigger column is associated
with the replication trigger header, wherein the replication
trigger column specifies: (i) the trigger identifier, (ii) a name
of'a database column passed to the stored procedure, and (iii)
a sequence order number which identifies an order of the
database column passed to the stored procedure, the operation
further comprising:

updating a progress table that indicates a commit point of a

transaction which was last processed, wherein the com-
puter readable program code to invoke the specified
stored procedure is based on the commit point of the
progress table.

15. The computer program product of claim 11, wherein
the replication-only trigger is a post-commit-success trigger,
wherein the replication condition specifies a successful rep-
lication of at least a portion of the replication event.

16. The computer program product of claim 11, wherein
the replication-only trigger is a post-commit-failure trigger,
wherein the replication condition specifies a failure to repli-
cate at least a portion of the replication event.

17. The computer program product of claim 11, the opera-
tion further comprising:

providing a plurality of other replication-only triggers,

each specifying a respective replication condition and a
respective stored procedure, wherein each of the repli-
cation conditions specify a respective commit operation
for at least a portion of an associated transaction, and
wherein the stored procedures are invoked in an order
corresponding to a commit order of the associated trans-
actions.

18. The computer program product of claim 11, wherein
the replication condition specifies a transactional event which
occurs prior to an associated commit operation, and wherein
the stored procedure is invoked prior to the associated commit
operation.

19. The computer program product of claim 11, wherein
the replication-only trigger is a pre-commit trigger, wherein
the replication condition specifies at least one of an insert
operation, an update operation and a delete operation,
wherein the transaction is at least one of an insert transaction,
an update transaction, and a delete transaction.

20. A system, comprising:

a processor; and

amemory containing a program that, when executed by the

processor, performs an operation for managing repli-
cated data at a target database, the operation comprising:
registering a replication-only trigger specifying a repli-
cation condition and a stored procedure, the replica-
tion-only trigger configured to invoke the stored pro-
cedure only upon detecting a replication event at the
target database that satisfies the replication condition,
wherein the replication-only trigger comprises one of:
(1) a pre-commit trigger, and (ii) a post-commit trig-
ger, wherein the pre-commit trigger executes within a
transaction that applies the replication event to data in
the target database, wherein the post-commit trigger
creates an indication specifying whether the replica-
tion event is successfully applied to the data in the
target database wherein the stored procedure speci-
fied in the replication-only trigger is configured to be
invoked only once, wherein registering the replica-
tion-only trigger comprises specifying a set of
attributes of the replication-only trigger, wherein the
set of attributes comprise: (i) a name of a server host-
ing the target database, (ii) a replicate name, (iii) a
name of the stored procedure, (iv) a type of the repli-

US 9,286,346 B2

17

cation-only trigger, and (v) a set of database columns
passed to the stored procedure;

monitoring, at the target database, replication events
received from a source database to detect when the
condition replication is satisfied; and

responsive to detecting a first replication event that sat-
isfies the replication condition specified in the repli-
cation-only trigger, invoking the stored procedure
specified by the replication-only trigger at the target
database.

21. The system of claim 20, wherein the replication-only
trigger is a post-commit trigger, wherein the post-commit
trigger is configured to be invoked only once, wherein the
replication condition specifies a commit operation, and
wherein the stored procedure is invoked after the commit
operation has completed.

22. The system of claim 21, the operation further compris-
ing:

upon detecting that the replication-only trigger is a post-

commit trigger, entering a post-commit trigger request
into a log; and

wherein invoking the specified stored procedure is further

in response to processing the post-commit trigger
request in the log.

23. The system of claim 20, wherein the replication-only
trigger further comprises a replication trigger header, wherein
the replication trigger header specifies: (i) a replicate identi-
fier the replication-only trigger header is applied to, (ii) a
name of the stored procedure, and (iii) a set of flags identify-
ing a type of the replication-only trigger, wherein a replica-
tion trigger column is associated with the replication trigger
header, wherein the replication trigger column specifies: (i)
the trigger identifier, (ii) a name of a database column passed
to the stored procedure, and (iii) a sequence order number

10

15

20

25

30

18

which identifies an order of the database column passed to the
stored procedure, the operation further comprising:

updating a progress table that indicates a commit point of a

transaction which was last processed, wherein invoking
the specified stored procedure is based on the commit
point of the progress table.

24. The system of claim 20, wherein the replication-only
trigger is a post-commit-success trigger, wherein the replica-
tion condition specifies a successful replication of at least a
portion of the replication event.

25. The system of claim 20, wherein the replication-only
trigger is a post-commit-failure trigger, wherein the replica-
tion condition specifies a failure to replicate at least a portion
of the replication event.

26. The system of claim 20, the operation further compris-
ing:

providing a plurality of other replication-only triggers,

each specifying a respective replication condition and a
respective stored procedure, wherein each of the repli-
cation conditions specify a respective commit operation
for at least a portion of an associated transaction, and
wherein the stored procedures are invoked in an order
corresponding to a commit order of the associated trans-
actions.

27. The system of claim 20, wherein the replication con-
dition specifies a transactional event which occurs prior to an
associated commit operation, and wherein the stored proce-
dure is invoked prior to the associated commit operation.

28. The system of claim 20, wherein the replication-only
trigger is a pre-commit trigger, wherein the replication con-
dition specifies at least one of an insert operation, an update
operation and a delete operation, wherein the transaction is at
least one of an insert transaction, an update transaction, and a
delete transaction.

